Lecture 8 (II): Hypothesis Testing 2

$$\hat{p} \pm \int \frac{\hat{p}(1-\hat{p})}{n} \cdot Z_{4/2} (d=0.05)$$

$$= 0.55 \pm \int \frac{0.55 \times 0.45}{100} \cdot 1.96 \\ = (0.452, 0.648) \cdot 1.96 \\ = (0.452, 0.648) \cdot 1.96 \\ = \frac{1-d}{\sqrt{2}} \cdot \frac{1}{2} \cdot \frac{1$$

前面简略複習 estimation
$$<_{interval}^{point estimation}$$

水下谈 testing .
Null hypothesis $H_0: p = \frac{1}{2}$
Alternative hypothesis $H_a: p \pm \frac{1}{2}$
• 先简化问题, 以去銅板為1刻:
假设只去一次, 並且 P只有两种多能
 $P = \{ 0.1, 0.9 \}$ $parameter space
參数空间
結果 X=1? Ho: p= 0.9
Ha: p \pm 0.9 (p=0.1)
• 实际情況裡 , $P = [0, 1]$ [(\cdots)
 $H_a: p \pm 0.9 (p=0.1)$
• 实际情況裡 , $P = [0, 1]$ [(\cdots)
 $f = 100$ 次,得X1, X2, \cdots X100 (n=100, 算成算 $f \approx ?)$
由 CLT, $\bar{X} \sim N(p, \frac{p(1-p)}{n})$ (if $n \neq \infty$)
 $\bar{X} = \frac{\bar{X}-P}{\sqrt{\frac{p(1-p)}{n}}} \sim N(0, 1)$ (if $n \neq \infty$)$

$$\Rightarrow \frac{\overline{X} - 0.5}{\sqrt{\frac{0.5(1-0.5)}{100}}} \sim \mathcal{N}(0,1)$$

如果 Xi,…, Xioo 是一組 tandom sample (大假设)

4

Example: 設 CMU 男生的平均身髙 ~ N (ル,σ²) しち
随机抽取10人,得如下之様本:
170 184 179 157 175 164 162 170 180 182
Q1: $M = ?$ $\sigma = ?$ $A^2: H_0: M \le 165$ $H_a: M > 165$
Q1: $\Rightarrow \hat{\mathcal{M}} = 172.3 \overline{X}$ $\hat{\sigma} = 9.20 \Sigma(Xi-\overline{X})^2 / n-1 = \hat{\sigma}^2 \equiv S^2$
又, :: X1, Xn ~ N(U, σ^2) 我们有 又~ N(U, $\frac{\sigma^2}{n}$), for any n ⇒ U2 95% CI =
(i) $\overline{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$, if σ is known
(ii) $\overline{x} \pm t_{\alpha_{x},n-1} \frac{\widehat{\sigma}}{\sqrt{n}}$, unknown

(i)
$$\frac{\bar{X}-M}{\sigma_{\overline{n}}} \sim \mathcal{N}(0,1)$$

 $\Rightarrow P_{r}\left\{-1.96 < \frac{\bar{X}-M}{\sigma_{\overline{n}}} < +1.96\right\} = 0.95$
or $P_{r}\left\{-\bar{X}-1.96\frac{\sigma}{\sigma_{\overline{n}}} < -M < -\bar{X}+1.96\frac{\sigma}{\sigma_{\overline{n}}}\right\} = 0.95$
or $P_{r}\left\{-\bar{X}-1.96\frac{\sigma}{\sigma_{\overline{n}}} < M < \bar{X}+1.96\frac{\sigma}{\sigma_{\overline{n}}}\right\} = 0.95$
or $P_{r}\left\{\bar{X}-1.96\frac{\sigma}{\sigma_{\overline{n}}} < M < \bar{X}+1.96\frac{\sigma}{\sigma_{\overline{n}}}\right\} = 0.95$
(ii) $\frac{\bar{X}-M}{\sigma_{\overline{n}}} \sim f_{n-1}$ (Student's f_{-} distribution
with degree of freedom
 $n-1$)
 $\Rightarrow P_{r}\left\{-2.262 < \frac{\bar{X}-M}{\sigma_{\overline{n}}} < 2.262\right\} = 0.95$
 $\Rightarrow \cdots \Rightarrow P_{r}\left\{\bar{X}-2.262\frac{\sigma}{\sigma_{\overline{n}}} < M < \bar{X}+2.262\frac{\sigma}{\sigma_{\overline{n}}}\right\} = 0.95$
 $\mu L = 0, \mu S$

d.f.	t.90	t.95	t _{.975}	t_99
1	3.078	6.3138	12.706	31.821
2	1.886	2.9200	4.3027	6.965
3	1.638	2.3534	3.1825	4.541
4	1.533	2.1318	2.7764	3.747
5	1.476	2.0150	2.5706	3.365
6	1.440 -	1.9432	2.4469	3.143
7	1.415	1.8946	2.3646	2.998
8	1.397	1.8595	2.3060	2.896
9	1.383	1.8331	2.2622	2.821
10	1.372	1.8125	2.2281	2.764
11	1.363	1.7959	2.2010	2.718
12	1.356	1.7823	2.1788	2.681
13	1.350	1.7709	2.1604	2.650
14	1.345	1.7613	2.1448	2.624

u

Power curve

Two-sided

One-sided

$$\begin{array}{c} (Z) = \sum_{\substack{z \in I \\ z \in$$

Homework 8.1

Tossing a coin with distribution: X=1 (if head, probability=p) and X=0 (if tail, probability=1-p). Let X₁...X₁₀₀ be 100 realizations. Please (1) give the point estimate; (2) derive the formula of 95% confidence interval of p and justify your derivation. (3) Explain: What is the distribution of $\sum_{i=1}^{100} X_i$?

Homework 8.2

Explain the meaning of 95% (or $100(1-\alpha)$ %) confidence interval.

Homework 8.3

Let $X_1...X_{10}$ and $Y_1...Y_5$ be distributed as $N(\mu_1, 4)$ and $N(\mu_2, 4)$ respectively. If you use the following Z-statistic to test the hypotheses, $H_0: \mu_1 < \mu_2$ versus $H_a: \mu_1 > \mu_2$,

$$Z = \frac{\overline{X} - \overline{Y}}{\sigma \sqrt{1/5 + 1/10}} \quad \text{with} \quad \sigma = 2.$$

Please give a plot (better by a computer package like Excel or others) of the 'power curve' over a reasonable range of μ_1 - μ_2 .